Abstract

The Solar Probe Shield/Antenna Materials Characterization

J. Randolph'	G. Olalde⁴	R. Taylor ⁷
J. Ayon ¹	E. Pierson⁵	P. Valentine ^c
R. Dirling ²	S. Rawal⁵	W. Vaughn³
R. Mivake ¹	J. F.Robert⁴	· ·

This paper considers the process to select the shield/antenna material that will satisfy the design requirements of the Solar Probe mission to the sun. A joint Us. - French testing program was devised that would screen samples of carbon-carbon to determine the fabrication process of the material that would produce the best thermal-optical properties, lowest mass loss, and best RF properties at the high temperatures during the shield operation. From the test results we have selected a fabrication process for the shield materials. In addition, the results will add new information to the high temperature knowledge base of carbon-carbon materials.

¹⁾ Jet Propulsion Laboratory, Caltech, Pasadena, CA - USA

²⁾ Science Application International Corp., Fountain Valley, CA - USA

³⁾ NASA Langley Research Center, Hampton, VA - USA

⁴⁾ Institute de Science et de Genie des Materiaux et Precedes (IMP), Centre National de la Recherche Scientifique, Odeillo, Font-Romeu Cedex, France

⁵⁾ Lockheed Martin Astronautics, Denver, CO - USA

⁶⁾ General Atomics, San Diego, CA - USA

⁷⁾ Thermophysical Properties Research Laboratory, West Lafayette, IN - USA